21-356 Homework 6

Arthur O'Dwyer 23rd April 2006

1

Let $A \subset \mathbb{R}^N$ be an open set and let $f : A \to \mathbb{R}^N$ be a function of class C^1 with $\det Jf(x) \neq 0$ for all $x \in A$. Given a point $y_0 \notin f[A]$, let

$$
g(x) = |y_0 - f(x)|^2 \quad x \in A
$$

Show that $\nabla g(x) \neq 0$ for all $x \in A$.

First, note that f maps A into \mathbb{R}^N , and since $y_0 \notin f[A]$, $g(x)$ is always (the square of) a positive number. We need to show that $f(x)$ never runs "parallel to y_0 " — that is to say, never runs tangent to any hypersphere centered at y_0 .

Since det $Jf(x) \neq 0$, by the inverse function theorem we know that f is invertible near x, for any $x \in A$, and therefore that f is entirely invertible.

2

Given the equation

$$
a\log(1+xy) + a^2xy - 2\sin x + y - 1 = 0,
$$

where $a \in \mathbb{R}$,

(a.) prove that in a neighborhood of the point $P = (0, 1)$, the equation implicitly determines y as a function of x.

The Jacobian of this function at $(a, x, y) \in \mathbb{R}^3$ is

$$
Jf(a, x, y) = (\log(1+xy) + 2axy - ay(1+xy)^{-1} + a^2y - 2\cos x - ax(1+xy)^{-1} + a^2x + 1)
$$

which at $P = (a, 0, 1)$ is $(0, a^2 + a - 2, 1)$. In other words, as y increases by 1, x increases by $a^2 + a - 2$. So we have $x \approx (a^2 + a - 2)(y - 1)$, or $y \approx x/(a^2 + a - 2) + 1$. (This function indeed passes through $(a, 0, 1)$, which is a good sign.) $Q.E.D.$

(b.) Determine, if they exist, the values of a for which the equation determines a function $y = y(x)$ with a maximum at the point $x = 0$.

Since the implicitly determined function is *linear*, it can't possibly have a maximum anywhere! This implies that our answer to part (a) must have been wrong.

(c.) Sketch the graph of the function $y = y(x)$ near the point $x = 0$.

3

Given the function $f(x, y, z, w) = (y^2 + w^2 - 2xz, y^3 + w^3 + x^3 - z^3),$

(a.) prove that in the neighborhood of $(1, -1, 1, 1)$, the hypotheses of the implicit function theorem are satisfied and that there exists a function $g(y, w) = (g_1(y, w), g_2(y, w))$ such that

$$
f(g_1(y, w), y, g_2(y, w), w) = (0, 0)
$$

for all (y, w) near $(-1, 1)$.

We need to show that $\det Jf(y, w, x, z) = \det \frac{f_1, f_2}{\partial y, w, x, z} \neq 0$. That's easy:

$$
\nabla f_1 = (2y, 2w, -2z, -2x)
$$

$$
\nabla f_2 = (3y^2, 3w^2, 3x^2, -3z^2)
$$

and $x, y, z, w \neq 0$, so we win.

By the implciit function theorem, then, there exists a $g = (g_1, g_2)$ of the kind we're looking for, and it expresses x, z in terms of y, w .

(b.) find the first-order partial derivatives of g at the point $(-1, 1)$.

We can find these derivatives by implicit diferenation. Example:

$$
(y2 + w2 - 2xz, y3 + w3 + x3 - z3) = 0
$$

$$
y2 + w2 = 2xz
$$

$$
y3 + w3 = x3 - z3
$$

4

Given the unction

$$
f(x, y, z) = (z \cos xy, z \sin xy, x + z),
$$

(a.) prove that f has a local inverse in the heighboord of $(1, 0, 1)$.

That is, prove that f is invertible. That's the same as showing that f is $C¹$ (which is obvious), and then that its Jacobian determinant is non-zero everywhere.

$$
Jf(x,y,z) = \begin{pmatrix} -yz\sin xy & yz\cos xy & 1\\ -xz\sin xy & xz\cos xy & 0\\ \cos xy & \sin xy & 1 \end{pmatrix}
$$

The determinant is

$$
(-yz\sin xy)(xz\cos xy) - (yz\cos xy)(-xz\sin xy) - xz = -xz
$$

which is non-zero at $x = 1$, $z = 1$. *Q.E.D.*

(b.) find the Jacobian matrix of f^{-1} at the point $(1,0,2)$.

Use a linear approximation of f^{-1} : we know the Jacobian is

$$
Jf(x,y,z) = \begin{pmatrix} -yz\sin xy & yz\cos xy & 1\\ -xz\sin xy & xz\cos xy & 0\\ \cos xy & \sin xy & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1\\ 0 & 2 & 0\\ 1 & 0 & 1 \end{pmatrix}
$$

So we have $f(x, y, z) \approx (z, y, x + z)$; so we can write the inverse as $f^{-1}(a, b, c) \approx (c - a, b, a)$. So the Jacobian of that is simply

$$
Jf^{-1}(a,b,c) = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}
$$

Q.E.D.