
15-451 Homework #6b ajo, kfleming

15-451 Homework 6b

Arthur O’Dwyer

K. Elliott Fleming

April 19, 2005

3. Finding a separating hyperplane.

Suppose we are given n green points G = (Pi | i ∈ 1..n) and m red points R = (Qi | i ∈ 1..m) in
d dimensions. Show how to determine a separating hyperplane if one exists, using linear program-
ming.

We have mn linear constraints, of the form “hyperplane H separates points Pi and Qj” for each
Pi ∈ G and Qj ∈ R. If we represent the hyperplane as three d-dimensional vectors X, Y , Z, then
our linear programming constraints become

aijX + bijY + cijZ = xijPi + (1− xij)Qj
0 ≤ xij ≤ 1

Thus we have an LP problem in 4mn variables and 4mn simple constraints. Solve the system. If it
is feasible, the resulting X, Y , Z will define the hyperplane we’re looking for.

4. 3D Linear Programming.

Give a randomized expected-linear-time algorithm for solving three-dimensional linear programming
problems.

This is a direct generalization of the 2D case. The bounding box gives us an initial “feasible”
polytope in three dimensions (a polyhedron). We pick the ith constraint at random. It corresponds
to a plane cutting across the current feasible polytope, intersecting up to i − 1 previous constraint
planes in up to i− 1 lines. We project the objective function onto the ith plane, and that gets us a
two-dimensional LP problem: maximize the objective function over the polygon bounded by the up
to i− 1 intersection lines. We solve that problem in linear time by the previously given algorithm.
Repeat for i ∈ 1..n.

The running time is expected to be O(n) for the same reasons that the 2D case’s running time is
expected to be O(n): backwards analysis. Each ith constraint we remove, working backwards, has
a 3/i chance of actually affecting the current solution. Affecting the current solution means doing
O(i) work to solve a 2D LP problem with i constraints. Not affecting the current solution means
doing some constant work, c.

So the expected running time of this algorithm is
∑
i∈1..nO(i) · 3

i + c =
∑
i∈1..nO(1) = O(n).

Q.E.D.

1 April 19, 2005

15-451 Homework #6b ajo, kfleming

5. Perfect matching.

Let G = (V,E) be an undirected graph on n vertices. A perfect matching of G is a subset E′ ⊂ E
such that each vertex is the endpoint of exactly one edge of E′.

Consider the following expression of perfect matching as an LP problem. For each edge e ∈ E
we have a variable xe. The constraints are:

0 ≤ xe ≤ 1 for each e ∈ E∑
e∈E|v∈ϕ(e)

xe = 1 for each v ∈ V

(a.) Show that if G is bipartite and the system above is feasible then there is a perfect matching
in the graph G.

This is a direct application of Hall’s Marriage Theorem. We choose a bipartition (X,Y) of G.
Let the subset S ⊆ X be given, and define E(S) the set of edges with one endpoint in S. Then
|N(S)| ≥ |S|, because

∑
e∈E(S) xe = |S| by the constraint that each vertex’s adjoining edge weights

must sum to 1. Note that E(S) ⊆ E(N(S)). Then
∑
e∈E(S) xe ≤

∑
e∈E(N(S)) xe = |N(S)|, and we

have the result we wanted.

(b.) Give an example of a graph with no perfect matching, but a feasible edge-weighting.

Take G = K3, with each of the three edges weighted 1/2.

2 April 19, 2005

