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1.

Is the Petersen graph planar? If it is, exhibit a plane graph isomorphic to it; otherwise, prove that
it is not.

(Note that this is Exercise 9.8.1 in the book, except that they provide an algorithm that looks to
me like overkill in this case.)

The Petersen graph is not planar because it is possible to condense sets of its vertices to produce
a graph isomorphic to K 5, which is not planar itself. Condensing each pair of vertices on a “spoke”
between the “inner” and “outer” cycles yields a graph isomorphic to K5 5. In technical terms, I
think we say that K5 5 is a minor of the Petersen graph.

2.

Let the graph G be given. Prove that there exists an orientation D of G such that the indegree and
outdegree of each vertex in D differ by at most 1.

This problem can be stated in terms of a lemma and a corollary, where the corollary is what we're
asked to prove. But first, let us define this useful concept:

Definition. Let us call G an even graph if it is the case that dg(v) is even for every v € V(QG).

Lemma. Any graph G can be constructed by taking an even graph G’ and removing a set of
vertex-disjoint edges from it. (I will call any such even graph G’ an even supergraph of G.)

We prove the lemma as follows: Let G be given. It contains an even number of odd vertices. Pair
them up in any way you like, and join each pair with an edge. Now each odd vertex of G has been
converted to an even vertex, and each even vertex is still even; therefore, the resulting graph G’ is
an even graph, and removing the set of pairwise vertex-disjoint edges we just added will yield the
graph G.

Corollary. Any graph G has an orientation D such that the indegree and outdegree of each vertex
in D differ by at most 1.

We can orient any even graph G’ simply by choosing an Euler circuit on each connected com-
ponent of the graph; all connected even graphs have Euler circuits. The resulting orientation D’ is
such that the indegree and outdegree of each vertex are actually equal; this is important to what
follows.

Once we know how to orient any even graph, we can orient a non-even graph by taking the
orientation D’ of one of its even supergraphs G’, and removing the arcs corresponding to the edges
in E(G') \ E(G). Since those arcs are vertex-disjoint, the degree of each vertex decreases by at
most 1. Therefore, the resulting orientation of G satisfies our criterion. Q.E.D.
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3.

Let the plane graph G be given, and assume that it has no cut edges. Show that the faces of G can
be colored with two colors so that adjacent faces have different colors, if and only if dg(v) is even
for every vertex v € V(G).

(Note that this is Exercise 9.6.1 in the book, modulo Bondy and Murty’s forgetting to deal with
graphs which have cut edges, and also with graphs that are unconnected and therefore not strictly
Eulerian.)

If G has no cut edges, then each edge of G separates two distinct faces of G. (If some edge did
not separate two faces, then it would be possible to draw a continuous curve from one side of the
edge to the other, not cutting any other edges, thus proving that the edge in question was a cut
edge all along, since that closed curve separates the two endpoints of the given edge!)

So each edge separates two faces. Now we must prove that we can 2-color the faces of the graph
iff it contains no odd vertices.

We cannot 2-color G’s faces if G contains an odd vertex; this is equivalent to stating that we
cannot 2-color the vertices of the dual graph G* if G* contains an odd face, and this is certainly
true. (No bipartite graph contains an odd cycle, and each face of G* is a cycle.)

We can 2-color G’s faces if G contains no odd vertex; one algorithm for doing this is to start with
a “scratch” graph H := G and all G’s faces colored white, and then iteratively pick one face f of H,
toggle the colors of all the faces of G on the interior of f (white to black and black to white), and
remove the edges of f from H. This ensures that each edge of f separates two distinct colors, and
since G is composed of edge-disjoint cycles (being even), we can continue this coloring process until
H is empty of edges. Then we’ve processed each edge of GG, so each edge separates two colors on
adjacent faces. And if we pick any two adjacent faces a and b, there exists an edge separating them
(by definition), so @ and b must have different colors. Therefore we have constructed a 2-face-coloring
of the graph G.

We have now proved both directions of the equivalence; @Q.F.D.
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4.

In a network, a bottleneck is defined to be an arc such that an increase in its capacity would increase
the maximum of the values of the network flows. In the depicted network, with source x and sink v,
determine:
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(a.)  The least capacity that the arc denoted by the heavy line must have to prevent its being a
bottleneck

The answer is 3 units. To show this is correct, we can show that the value of a maximum flow when
cap(ad) = 4 is the same as the value of the maximum flow when cap(ad) = 3, and that the value of a
max flow when cap(ad) = 2 is less. But that’s just plug 'n’ chug; I'm going to try a more ambitious
approach.

First, we note that any edge wz cannot carry a flow greater than the total inflow at w or greater
than the total outflow at z. So we modify the given network’s weights accordingly:

N

Next, we assert that since all the flow must originate at x, and everything flowing along zg must
also flow along gq, we might as well set the effective capacity of hg to zero. Similar reasoning applies
to sy, rs, and sp. We reapply the inflow and outflow rules: Since the effective outflow of A and
inflow of p are both zero, those nodes do not participate in any max flow. So we can get rid of them:

3 May 7, 2005



21-484 Final Exam

Now, suppose our max flow carried 9 units on fy. Then k¢ and ¢/ must be at max capacity.
But if ¢/ is at max capacity, then bc carries 6 units and thus cf is empty. Then fk is empty, and
therefore the inflow at & is less than 3, and k¢ can’t be carrying 3 units. Contradiction! Therefore,
fy has an effective max capacity of at most 8 units.

Now for the finale. Can we produce a flow on this “reduced” network, letting cap(ad) be as big

as we please, that will obviously be a maximum flow? Yes, we can.
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Notice that cap(za) = 9; this is because anything that goes through de must go on up eb, which
doesn’t gain us anything over routing it through ab to begin with. So de must be zero, and then
cap(ad) must be 3 units.

This is a maximum flow on the original network as well, no matter how big we let cap(ad) get. So
the minimum capacity ad can have before it becomes a bottleneck is its capacity in this maximum
flow: 3 units. Increasing its capacity doesn’t increase the value of the maximum flow after this point.

(b.) A maximum flow and a minimum cut in the network when this arc is given the capacity
determined in part (a).

For the maximum flow, see the last diagram in part (a). One minimum cut (which must have
capacity 17) in the given network with cap(ad) = 3 is the pair of sets {z,a,b,d,e,g,h} and
{e, f,4,k, 0,m,n,p,q,r,s,y}. Notice that a and d are on the same side of the cut, proving (in a
third way!) that ad is not a bottleneck when the max flow is 17 units; at least one of bc, dj, gq would
have to be increased in capacity before the max flow could increase.
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