
Effects of Software on
Computer Power Usage
Arnold Pereira and Lincoln Roop

Electrical & Computer Engineering Department
Carnegie Mellon University

Abstract
As more and more computing work is pushed out to
mobile devices, power consumption becomes
increasingly important to deliver the balance of
performance and battery life end users need. We intend
to study the effects that different software programs,
including operating systems and applications have on
computer power consumption. Further, equipped with
this knowledge we aim to optimize the system for power
consumption depending on the current workload. Our
goal in this project is to develop a set of
recommendations as to which software programs are
the most power-aware for a given task, as well as to
develop a “low-power” power management mode that
can disable unnecessary tasks to yield improved
runtime above that currently attained by hardware
power management tactics such as Dynamic Voltage &
Frequency Scaling or reducing display brightness.

Introduction

Typical computer power management
strategies rely on reducing power usage by removing
power from unused devices and dynamically scaling
operating voltage and clock frequency. That is to say,
these approaches are primarily hardware-centric. While
these approaches are able to offer significant
performance improvement in many usage cases, they
only take into consideration total system load. This
would be an adequate approach for single-purpose
computers, however general-purpose computers running
modern multitasking operating systems run many
concurrent processes, each contributing their own share
of work and power consumption.

By studying different applications, including
operating system components, we can identify tasks
which are significant contributors of power
consumption. In some cases, it may be possible to
disable or reduce the execution frequency of less
important tasks that consume a significant amount of
power. Furthermore, by comparing the power
performance of multiple applications designed to
perform the same task, we can make recommendations
as to what software packages are the most power-
friendly.

A lot of traditional applications such as word
processing, picture editing, video editing and storage are
being moved to the cloud as cloud computing
technology improves and becomes more widely
accepted. This represents a shift in power consumption
trends from the client to the server. However, internet
browsers also consume energy, which will have to be
compared vis-à-vis the energy consumption of
traditional client-side software which performs the same
task (for instance Google Docs vs. LibreOffice).

A lot of processes run in the background, both
in Windows and Linux. It is a popular trend nowadays
for software developers to include automatic updaters or
quick launchers for programs which run in the
background. Not only does this have an effect on the
performance, but considering these run for the entire
uptime of the system, their power consumption could
accumulate.

Along the same lines, operating systems have
various hardware drivers that run to interact with the
various hardware or Plug and Play devices on the
system. In a particular boot and shut down cycle, it is a
possibility that one or many software drivers will not
perform any particular task for the user.

Prior Work

At a broader level, Windows and Linux
operating systems have been compared for their power
consumption at different frequency levels and at
different loads. The reasons for the difference have not
been explored clearly and hence optimization for work
load based power consumption could be developed
further. Comparisons are often done for servers as
power consumption often influences choice of operating
system. However, studies for personal computers have
not been conducted to the same extent. Linux has seen
development of PowerTOP which finds unnecessary
programs consuming power in idle mode. Tickless Idle
is another project that eliminates the periodic timer tick
to save power.

In the referenced paper by Mahesri and
Vardhan(2004), a laptop was analyzed for component-
wise breakdown of power consumption. For a laptop,
they found that the major source of power is the
processor, followed by the CD-R/RW, LCD backlight
and 802.11 wireless.

Work has also been done at the operating
system level by IBM for RedHat Linux operating

system. Using the CPUfreq tool, the in-kernel governors
(for regulating CPU clock speed) are selected after
getting information about the C and P states of the
system. The C states deal with the sleep modes while
the P states deal with the voltage and frequency in the
active mode of the processor. Most of this work
pertains to the hardware level and how to optimize it for
the processes it runs, we wish to focus on the software
layer.

Technical Details:

Since we are to study the effects of software on
the hardware platform provided, benchmarking is
required to compare various software programs and to
analyze their usage. Currently, Linux benchmarks are
primarily focused on various operations like multimedia
or CPU performance. However, for our application we
need to determine power effects: For example, we wish
to compare the power performance of audio or video
playback within a standard application versus within a
browser. To the best of our knowledge, there does not
exist any ‘energy benchmark’ for operating systems
today. To a certain extent, we will be benchmarking
software programs on the issue of. Differences in
consumption occur due to variations in processor usage,
memory access, cache utilization, disk cache utilization,
etc.

We will use a standard x86-based notebook
computer as our test platform. We will implement our
power monitoring by making use of the internal power
management systems integrated into modern notebook
computers, as well as conventional electronics test
equipment. By making use of conventional test
equipment as well as the computer’s internal power
management data, we can verify that the computer is
providing accurate power consumption data as well as
monitor the power consumption of individual
components if necessary. Hardware monitoring will be
done by measuring the battery voltage and current.
Current can be measure by introducing a high power,
high precision, low value resistor in the path of the
current. By measuring voltage across the resistor and
dividing it by the resistor value, we can derive the
supply current.

Our testing of operating system components be
performed on a Linux operating system, as its open-
source and modular design enables us to operate the
system disabling key components that would be difficult
or impossible to disable on a Windows platform. We
will test application software on both Windows and
Linux platforms, allowing us to compare results for the
same application running on Windows or Linux if

versions exist for both operating systems, (Mozilla
Firefox, Matlab, or LibreOffice for instance) as well as
comparing the results of different applications which
serve the same purpose. In order to deliver accurate
results, we will test typical usage cases for each
application. For instance, applications such as web
browsers are not typically processing large quantities of
data (although they very well may be in certain cloud
computing or web-based tasks), where a scientific
application such as Matlab does exactly that.

We will also be using benchmarking software,
though not yet decided, to find the trends in operating
systems and in applications. Once the trends are
established, we hope to develop a ‘Browser-oriented’
mode which would disable or kill unnecessary processes
which run in the background and have less than 10%
utilization. We believe that this will deliver significant
power savings to many users due to the extreme
proliferation of web-based applications in modern
consumer computing.

Challenges:

Isolating the effects of processes on the power
being consumed is a concern. Adding or deleting
processes would cause a slight change in power
consumption. However, we must also take into account
the contribution by the monitoring process. If we can
assume that the monitoring application's power
consumption remains reasonably constant under
different situations, then we can eliminate its effect from
our results by simply comparing change in power
consumption rather than absolute power consumption.

A second challenge we anticipate is how to
automate traditionally interactive tasks such as
browsing, watching videos, Facebook, Google search,
etc. and eliminate variation caused by background tasks
or the automation itself. It may be the case that the best
solution to this issue is simply to not automate. It has
been suggested that developing 'scripts' that we or others
we enlist to help with our data collection would follow.
These scripts would be designed to simulate typical
ways in which end users interact with computers, and if
followed carefully and results averaged out over several
trials should yield results similar to an ideal automated
solution (one which simulates identical usage patterns
across all runs and different applications without
contributing any power consumption variation that
would be difficult to filter out).

Project Schedule
● October 6: Prepare hardware testbench

environment – OS installed on computer,
power monitoring software working
properly and verified with multimeter.

● October 20: Prepare software benchmarks,
develop method for evaluating interactive
applications such as web browsers.

● November 10: Collect data from benchmarks
● December 1: Develop a power management

technique based on data from software power
management.

References
1. Aqeel Mahesri and Vibhore Vardhan, “Power

Consumption on a Modern Laptop”, Power-
Aware Computer Systems (2005), pp. 165-180

2. “Chrome and Firefox power consumption in
Linux”, www . benchmarkreviews . com

3. Projects, www . lesswatts . org
4. Jennifer Hopper, “Reduce Linux Power

Consumption”, 2009
5. “Linux captures the green flag, beats Windows

2008 Power Saving Measures”,
www . networkworld . com

http://www.networkworld.com/
http://www.networkworld.com/
http://www.networkworld.com/
http://www.networkworld.com/
http://www.networkworld.com/
http://www.lesswatts.org/
http://www.lesswatts.org/
http://www.lesswatts.org/
http://www.lesswatts.org/
http://www.lesswatts.org/
http://www.benchmarkreviews.com/
http://www.benchmarkreviews.com/
http://www.benchmarkreviews.com/
http://www.benchmarkreviews.com/
http://www.benchmarkreviews.com/

