
Effects of Software on Computer Power Usage Report 2

Arnold Pereira and Lincoln Roop

Department of Electrical & Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213
{arnoldp, lroop}@andrew.cmu.edu

Abstract
As more and more computing work is pushed out to mobile
devices, power consumption becomes increasingly important
to deliver the balance of performance and battery life end
users need. We intend to study the effects that different
software programs, including operating systems and
applications have on computer power consumption. Further,
equipped with this knowledge we aim to optimize the system
for power consumption depending on the current workload.
Our goal in this project is to develop a set of
recommendations as to which software programs are the
most power-aware for a given task, as well as to develop a
“low-power” power management mode that can disable
unnecessary tasks to yield improved runtime above that
currently attained by hardware power management tactics
such as Dynamic Voltage & Frequency Scaling or reducing
display brightness.

1. Introduction

Typical computer power management strategies rely
on reducing power usage by removing power from unused
devices and dynamically scaling operating voltage and clock
frequency. That is to say, these approaches are primarily
hardware-centric. While these approaches are able to offer
significant performance improvement in many usage cases,
they only take into consideration total system load. This
would be an adequate approach for single-purpose
computers, however general-purpose computers running
modern multitasking operating systems run many concurrent
processes, each contributing their own share of work and
power consumption.

By studying different applications, including
operating system components, we can identify tasks which
are significant contributors of power consumption. In some
cases, it may be possible to disable or reduce the execution
frequency of less important tasks that consume a significant
amount of power. Furthermore, by comparing the power
performance of multiple applications designed to perform
the same task, we can make recommendations as to what
software packages are the most power-friendly.

A lot of traditional applications such as word
processing, picture editing, video editing and storage are

being moved to the cloud as cloud computing technology
improves and becomes more widely accepted. This
represents a shift in power consumption trends from the
client to the server. However, internet browsers also consume
energy, which will have to be compared vis-à-vis the energy
consumption of traditional client-side software which
performs the same task (for instance Google Docs vs.
LibreOffice). We assume the software choice for a user is
based only on power and performance and not on GUI.
However, GUI is correlated with processor workload and so,
on power consumption.

A lot of processes run in the background, both in
Windows and Linux. It is a popular trend nowadays for
software developers to include automatic updaters or quick
launchers for programs which run in the background. Not
only does this have an effect on the performance, but
considering these run for the entire uptime of the system,
their power consumption could accumulate.

Along the same lines, operating systems have
various hardware drivers that run to interact with the various
hardware or Plug and Play devices on the system. In a
particular boot and shut down cycle, it is a possibility that
one or many software drivers will not perform any particular
task for the user.

2. Prior Work

At a broader level, Windows and Linux operating
systems have been compared for their power consumption at
different frequency levels and at different loads. The reasons
for the difference have not been explored clearly and hence
optimization for work load based power consumption could
be developed further. Comparisons are often done for servers
as power consumption often influences choice of operating
system. However, studies for personal computers have not
been conducted to the same extent. Linux has seen
development of PowerTOP which finds unnecessary
programs consuming power in idle mode. Tickless Idle is
another project that eliminates the periodic timer tick to save
power.

In the referenced paper by Mahesri and
Vardhan(2004), a laptop was analyzed for component-wise

breakdown of power consumption. For a laptop, they found
that the major source of power is the processor, followed by
the CD-R/RW, LCD backlight and 802.11 wireless.

Work has also been done at the operating system
level by IBM for RedHat Linux operating system. Using the
CPUfreq tool, the in-kernel governors (for regulating CPU
clock speed) are selected after getting information about the
C and P states of the system. The C states deal with the
sleep modes while the P states deal with the voltage and
frequency in the active mode of the processor. Most of this
work pertains to the hardware level and how to optimize it
for the processes it runs, we wish to focus on the software
layer.

3. Testing Methodology

Since we are to study the effects of software on the
hardware platform provided, benchmarking is required to
compare various software programs and to analyze their
usage. Currently, Linux benchmarks are primarily focused on
various operations like multimedia or CPU performance.
However, for our application we need to determine power
effects: For example, we wish to compare the power
performance of audio or video playback within a standard
application versus within a browser. To the best of our
knowledge, there does not exist any ‘energy benchmark’ for
operating systems today. To a certain extent, we will be
benchmarking software programs on the issue of.
Differences in consumption occur due to variations in
processor usage, memory access, cache utilization, disk
cache utilization, etc.

We are using a Dell OptiPlex 755 desktop as our
test platform. This machine uses a 2.67 GHz Intel Core 2
Quad CPU which supports a limited range of frequency
scaling steps (2.0, 2.33, and 2.67 GHz). We will implement
our power monitoring by making use of the internal power
management systems integrated into the machine, as well as
conventional electronics test equipment. By making use of
conventional test equipment as well as the computer’s
internal power management data, we can verify that the
computer is providing accurate power consumption data as
well as monitor the power consumption of individual
components if necessary. Hardware monitoring will be done
by measuring the DC voltage and current. Current can be
measure by introducing a high power, high precision, low
value resistor in the path of the current. By measuring
voltage across the resistor and dividing it by the resistor
value, we can derive the supply current.

The conventional test equipment used consist of an
AC plugmeter and multiple digital multimeters. The AC
plugmeter is placed between the PC's power cord and the
wall outlet and wirelessly delivers statistics regarding AC
power consumption to a computer for data collection. The
digital multimeters we are using are Hewlett-Packard model

34401A 6 ½ digit bench multimeters. These multimeters can
be remotely controlled by a computer over RS-232 or GPIB,
we will use this functionality to collect DC voltage and
current statistics for the individual power supply output rails
automatically. This automation will enable us to produce a
very accurate average power consumption calculation. A
block diagram of the DC monitoring system is given in
Figure 1.

Figure 1: DC Monitoring System

The AC plugmeter is a wireless device that returns
the RMS value of the AC current and voltage drawn by the
device which is connected into it. It also returns a power
value, which is not calibrated to Watts but is a linear value.
In addition, it transmits the AC frequency and on-time of the
device, which is not relevant to our requirements. The results
obtained from the plug meter are tabulated in Figure 2. The
objective of the AC data is to find out the effect of varying
system power consumption on the AC mains which is the
power which is finally billed. However, transformer
inefficiencies in the SMPS (Switched Mode Power Supply)
have the potential to dampen the changes in DC system
power consumption. This would not be in the case of
laptops, as they run directly on batteries.

Our testing of operating system components will be
performed on a Linux operating system (Ubuntu 10.04 LTS),
as its open-source and modular design enables us to operate
the system disabling key components that would be difficult
or impossible to disable on a Windows platform. We will
test application software (Mozilla Firefox, Matlab, or
LibreOffice for instance) as well as comparing the results of
different applications which serve the same purpose (Firefox
vs Google Chrome, etc). In order to deliver accurate results,
we will test typical usage cases for each application. For
instance, applications such as web browsers are not typically
processing large quantities of data (although they very well
may be in certain cloud computing or web-based tasks),
where a scientific application such as Matlab does exactly
that.

ATX Power
Supply

Computer
Components

Digital
Multimeter

Digital
Multimeter

Digital
Multimeter

Computer
(Data Collection)

Dashed line indicates that multimeters are for monitoring
only and have negligible effect on the system.

Workload Reported Power
1. General 12-13
2 With CR Read 15
3 Continuous HDD access

(du command)
17-18

4 Stress Benchmark -8 threads 25
5 Stress Benchmark – 25

threads
26

Figure 2: Data collected from AC plugmeter

We will also be using benchmarking software,
though not yet decided, to find the trends in operating
systems and in applications. Once the trends are established,
we hope to develop a ‘Browser-oriented’ mode which would
disable or kill unnecessary processes which run in the
background and have less than 10% utilization. We believe
that this will deliver significant power savings to many users
due to the extreme proliferation of web-based applications in
modern consumer computing.

With respect to our project, we shall be discussing tools in
Linux for power monitoring and control along with the
results obtained:

3.1. PowerTOP

PowerTOP is a Linux tool to monitor the wake up
requests generated by various system processes. This
includes the Linux scheduler, the interrupts raised by 802.11
WLAN driver, keyboard, mouse and other peripheral
devices. A key note here is that these frequent interrupts
prevent the CPU from remaining in the deep sleep state for
an extended period of time.

CPU performance states are defined by P-states
while its operating states are defined by C-states. These
performance states will have different CPU operating
frequencies to take reduce CPU performance and power
consumption. The number of P states varies for different
processor generations. For example, our test hardware
system has an Intel Core 2 Quad with 4 cores having three P
states defined by three frequencies- 2.00GHz, 2.33GHz and
2.67GHz. Different C –states correspond to different
techniques employed to save power to a varying degree. C0
is the CPU running state. C1 is when the clock supply to
certain/ all modules are cut off. In C2, the clock supply to the
external peripherals as well as the internal clock supply is cut
off. C3 and above states cut off clock supply as well as
reduce voltages to a low value or zero, depending on the
processor architecture.

In our tests, we ran PowerTOP on the OptiPlex
workstation. Some of the major causes of interrupts have
been summarized in Figure 3. Further exploration is required
into interrupts caused by different types of the same

hardware/ software. For example, we have to conduct tests
by connecting mobile phones from various manufacturers or
running different operating systems.

Source Interrupt
%

Scope for
power
consumption
reduction

1 Kernel Scheduler 44-90 Time quantum
to run scheduler
can be varied

2 Input- Mouse 7-15% N/A
3 USB storage(Idle) 4-6% Kill monitoring

process
4 Mobile phone

connected via
USB (idle)

4-6% Kill monitoring
process

5 Flash player
plugin(idle)

10-25% Kill process

Figure 3: Major Causes of Interrupts
NOTE: Idle means that the process is not required or the user

does not wish to access the device or data at that instant

3.2. CPUfreq

CPUfreq is a subsystem in Linux kernel which
provides an operating system CPU frequency control. It has
a corresponding daemon called CPUfreqd. There are five
governors in CPUfreq: performance, powersave, ondemand,
conservative and userspace. These modes are described in
the following paragraph:

CPUfreqd has a configuration file cpufreqd.conf
which can be modified by a root user. This file decides
which of the governor is active in a given period of time. For
example, a user can define performance governor to be ap-
plicable when the AC supply is active, or the powersave gov-
ernor to be active when the battery is less than 40% with no
AC supply. Userspace governor defines profiles for common
applications on the system. Ondemand and conservative are
the dynamic governors. Two variables are defined here by
CPUfreq; namely up_threshold and down_threshold. Both
the dynamic governors change the frequency to the next
available frequency. Generally, the upper and lower
threshold are defined as 98 and 95 % respectively. So if the
CPU utilization exceeds 98%, the ondemand governor
changes the frequency of the CPU to the next available one.
Conservative will do the same, except require the CPU util-
ization criteria to remain true for a longer time, i.e. more
delay in changing.

We shall be modifying the configuration files to achieve our
custom power save governor.

Isolating the effects of processes on the power being
consumed is a concern. Adding or deleting processes would
cause a slight change in power consumption. However, we
must also take into account the contribution by the monitor-
ing process: CPUfreqd itself has some processor and
memory footprint. CPU footprint can be reduced by redu-
cing the frequency of the governor checks.

4. Challenges

From the preliminary results we obtained from the
plug meter and PowerTOP, we would like to study how the
Linux scheduler quantum affects the power consumption
pattern, currently our results show that it raises the highest
number of interrupts. In the idle state if this value can be
reduced, it could potentially reduce the power consumption
further. This would require recompiling the kernel to change
its scheduler quantum, which is currently 1ms. Two specific
challenges here are the corresponding unresponsiveness and
how to dynamically change this time quantum.

A second challenge we anticipate is how to
automate traditionally interactive tasks such as browsing,
watching videos, Facebook, Google search, etc. and
eliminate variation caused by background tasks or the
automation itself. We feel that the best solution to this issue
is simply to not automate. It has been suggested that
developing 'scripts' that we or others we enlist to help with
our data collection would follow. These scripts will be
designed to simulate typical ways in which end users interact
with computers, and if followed carefully and results
averaged out over several trials should yield results similar
to an ideal automated solution (one which simulates identical
usage patterns across all runs and different applications
without contributing any power consumption variation that
would be difficult to filter out).

Each script will be designed to take 15 to 30
minutes of user time, as we believe this will be a long
enough period to collect useful data without being too long
to be feasible. During the session, a user (one of us or
someone we enlist to help) will operate our workstation,
performing tasks one would commonly use a computer for.
Our automated power consumption monitoring system will
periodically collect power consumption data, allowing us to
calculate the average power usage of the workstation during
the usage session. Inconsistencies in data collected will be
averaged out through the conduction of many such sessions;
we believe this is a suitable method to produce useful
experimental data while at the same time not requiring the
usage scripts to be incredibly repetitive and thus difficult to
perform consistently.

Project Schedule

We have divided the work needed to complete this
project into several milestones as described below:

● October 25: Prepare hardware test bench
environment – OS installed on computer, power
monitoring software working properly.

● November 11: Prepare software benchmarks, finish
usage scripts for evaluating interactive applications
such as web browsers. Make necessary hardware
modifications for DC power monitoring.

● November 18: Collect and analyze power usage
data from applications.

● December 1: Develop a power management
technique based on data from software power
management. Vary Linux scheduler quantum and
develop custom CPUfreq governor.

References
1. Aqeel Mahesri and Vibhore Vardhan, “Power

Consumption on a Modern Laptop”, Power-Aware
Computer Systems (2005), pp. 165-180

2. R. Ayoub, U. Ogras, E. Gorbatov, Y. Jin, T. Kam, P.
Diefenbaugh and T. Rosing. OS- Level Power
Minimization Under tight performance constraints
in general purpose systems. In proceedings
ISLPED, 2011

3. Daniel P. Bovet, Marco Cesati. Understanding the
Linux Kernel

4. “Chrome and Firefox power consumption in
Linux”, www . benchmarkreviews . com

5. Projects, www . lesswatts . org
6. Jennifer Hopper, “Reduce Linux Power

Consumption”, 2009
7. “Linux captures the green flag, beats Windows

2008 Power Saving Measures”,
www . networkworld . com

http://www.networkworld.com/
http://www.networkworld.com/
http://www.networkworld.com/
http://www.networkworld.com/
http://www.networkworld.com/
http://www.lesswatts.org/
http://www.lesswatts.org/
http://www.lesswatts.org/
http://www.lesswatts.org/
http://www.lesswatts.org/
http://www.benchmarkreviews.com/
http://www.benchmarkreviews.com/
http://www.benchmarkreviews.com/
http://www.benchmarkreviews.com/
http://www.benchmarkreviews.com/

