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Flirting with Infinity

CS 15-251Lecture 14Lecture 14 Blake SchollBlake Scholl

The Ideal Computer:The Ideal Computer:
no bound on amount of memoryno bound on amount of memory

Whenever you run out of memory, the Whenever you run out of memory, the 
computer contacts the factory. A computer contacts the factory. A 
maintenance person is flown by maintenance person is flown by 
helicopter and attaches 100 Gig of helicopter and attaches 100 Gig of 
RAM and all programs resume their RAM and all programs resume their 
computations, as if they had never been computations, as if they had never been 
interrupted.interrupted.

An Ideal Computer Can BeAn Ideal Computer Can Be
Programmed To Print Out:Programmed To Print Out:

ππ: 3.14159265358979323846264: 3.14159265358979323846264……
2: 2.00000000000000000000002: 2.0000000000000000000000……
e: 2.7182818284559045235336e: 2.7182818284559045235336……
1/3: 0.333333333333333333331/3: 0.33333333333333333333……..
φφ: 1.6180339887498948482045: 1.6180339887498948482045……

Computable Real NumbersComputable Real Numbers

A real number r is A real number r is computablecomputable if there if there 
is a program that prints out the decimal is a program that prints out the decimal 
representation of r from left to right. representation of r from left to right. 
Thus, each digit of r will eventually be Thus, each digit of r will eventually be 
printed as part of the output sequence.printed as part of the output sequence.

Are all real numbers
computable?
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Describable NumbersDescribable Numbers

A real number r is A real number r is describabledescribable if it can if it can 
be unambiguously denoted by a finite be unambiguously denoted by a finite 
piece of English text.piece of English text.

2: “Two.”2: “Two.”
ππ: : ““The area of a circle of radius one.The area of a circle of radius one.””

Theorem: Every computable realTheorem: Every computable real
is also describableis also describable

Proof: Let r be a computable real that Proof: Let r be a computable real that 
is output by a program P. The following is output by a program P. The following 
is an unambiguous denotation:is an unambiguous denotation:

“The real number output by:” P“The real number output by:” P

MORAL: A computer 
program can be viewed as 

a description of its 
output.

Are all real numbers 
describable?
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To INFINITY …. 
and Beyond!

Correspondence PrincipleCorrespondence Principle

If two finite sets can be If two finite sets can be 
placed into 1placed into 1--1 onto 1 onto 
correspondence, then correspondence, then 
they have the same size.they have the same size.

Correspondence DefinitionCorrespondence Definition

Two finite sets are Two finite sets are 
defined to have the defined to have the 
same sizesame size if and only if if and only if 
they can be placed into 1they can be placed into 1--1 1 
onto correspondence.onto correspondence.

Georg Cantor (1845Georg Cantor (1845--1918)1918)
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Cantor’s Definition (1874)Cantor’s Definition (1874)

Two sets are defined to have Two sets are defined to have 
the the same sizesame size if and only if if and only if 
they can be placed into 1they can be placed into 1--1 1 
onto correspondence.onto correspondence.

Cantor’s Definition (1874)Cantor’s Definition (1874)

Two sets are defined to have Two sets are defined to have 
the the same cardinalitysame cardinality if and if and 
only if they can be placed only if they can be placed 
into 1into 1--1 onto correspondence.1 onto correspondence.

DoDo NN andand EE havehave the samethe same
cardinality?cardinality?

NN = { 0, 1, 2, 3, 4, 5, 6, 7, = { 0, 1, 2, 3, 4, 5, 6, 7, ……. }. }

EE = The even, natural numbers.= The even, natural numbers.

E and N do not have the 
same cardinality! E is a 
proper subset of N with 

plenty left over.

The attempted 
correspondence f(x)=x does 

not take E onto N.
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E and N do have the same 
cardinality!

0, 1, 2, 3, 4, 5, ….…
0, 2, 4, 6, 8,10,   ….  

f(x) = 2x  is 1-1 onto.  

Lesson: 

Cantor’s definition only requires 
that some 1-1 correspondence 
between the two sets is onto, 

not that all 1-1 correspondences 
are onto. 

This distinction never arises 
when the sets are finite.

If this makes you feel 
uncomfortable…..

TOUGH! It is the price that 
you must pay to reason about 

infinity 

DoDo NN andand ZZ havehave the samethe same
cardinality?cardinality?

NN = { 0, 1, 2, 3, 4, 5, 6, 7, = { 0, 1, 2, 3, 4, 5, 6, 7, ……. }. }

ZZ = { = { ……, , --2, 2, --1, 0, 1, 2, 3, 1, 0, 1, 2, 3, ……. }. }
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No way!  Z is infinite in two 
ways: from 0 to positive 
infinity and from 0 to 

negative infinity.  

Therefore, there are far 
more integers than 

naturals.

*Sigh*

N and Z do have the same 
cardinality!

0, 1,  2, 3,  4, 5,   6 …
0, 1, -1, 2, -2, 3, -3, ….

f(x) = x/2 if x is odd
-x/2  if x is even

Transitivity LemmaTransitivity Lemma

If f: AIf f: A→→B 1B 1--1 onto, and g: B1 onto, and g: B→→C 1C 1--1 onto1 onto
Then h(x) = g(f(x)) is 1Then h(x) = g(f(x)) is 1--1 onto A1 onto A→→CC

Hence, Hence, NN, , EE, and , and ZZ all have the same all have the same 
cardinality.cardinality.

DoDo NN andand NNxxNN havehave the samethe same
cardinality?cardinality?

NN= { 0, 1, 2, 3, 4, 5, 6, 7, = { 0, 1, 2, 3, 4, 5, 6, 7, ……. }. }

NNxxNN = Pairs of natural numbers (x,y)= Pairs of natural numbers (x,y)
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You bet!

We can prove this 
graphically.

Theorem:Theorem: NN andand NNxxN N have thehave the
same cardinalitysame cardinality
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The point (x,y)

corresponds to 
the ordered 

pair (x,y)

Theorem:Theorem: NN andand NNxxN N have thehave the
same cardinalitysame cardinality
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The point (x,y)

corresponds to 
the ordered 

pair (x,y)

DoDo NN andand QQ havehave the samethe same
cardinality?cardinality?

NN= { 0, 1, 2, 3, 4, 5, 6, 7, = { 0, 1, 2, 3, 4, 5, 6, 7, ……. }. }

Q Q = The Rational Numbers= The Rational Numbers
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No way!
The rationals are dense: 
between any two there is 

a third. You can’t list 
them one by one without 

leaving out an infinite 
number of them.

Don’t jump to 
conclusions!

There is a clever way 
to list the rationals, 

one at a time, without 
missing a single one!

The point at x,y represents x/y The point at x,y represents x/y

3

2

0 1
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We call a set countable
if it can be placed into 

1-1 onto 
correspondence with 
the natural numbers.

So far we know that N, 
E, Z, and Q are 

countable.

DoDo NN andand RR havehave the samethe same
cardinality?cardinality?

N = { 0, 1, 2, 3, 4, 5, 6, 7, …. }

RR = The Real Numbers= The Real Numbers

No way!
You will run out of 

natural numbers long 
before you match up 

every real.

Don’t jump to conclusions!
You can’t be sure that 
there isn’t some clever 

correspondence that you 
haven’t thought of yet.
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I am sure!
Cantor proved it.

He invented a very 
important technique 

called
“DIAGONALIZATION”

.

Theorem: The setTheorem: The set II of realsof reals
between 0 and 1 is not countable.between 0 and 1 is not countable.

Proof by contradiction:Proof by contradiction:
Suppose I is countable. Let f be the 1Suppose I is countable. Let f be the 1--1 1 
onto function from onto function from NN to I. Make a list L to I. Make a list L 
as follows:as follows:
0: decimal expansion of f(0)0: decimal expansion of f(0)
1: decimal expansion of f(1)1: decimal expansion of f(1)
……
k: decimal expansion of f(k)k: decimal expansion of f(k)
……

Theorem: The setTheorem: The set II of realsof reals
between 0 and 1 is not countable.between 0 and 1 is not countable.

Proof by contradiction:Proof by contradiction:
Suppose I is countable. Let f be the 1Suppose I is countable. Let f be the 1--1 1 
onto function from onto function from NN to I. Make a list L to I. Make a list L 
as follows:as follows:
0: .3333333333333333333333…0: .3333333333333333333333…
1: .3141592656578395938594982..1: .3141592656578395938594982..
……
k: .345322214243555345221123235..k: .345322214243555345221123235..
……
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dd22

22

dd33

33

dd1111

……441100LL

…………

33

22

dd0000

dd22

22

dd33

33

dd1111

441100LL

…………

33

22

dd0000

ConfuseL = . C0 C1 C2 C3 C4 C5 …
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5, if dk=6

6, otherwise
Ck=

ConfuseL = . C0 C1 C2 C3 C4 C5 …

dd22
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dd33

33

dd1111
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…………
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5, if dk=6

6, otherwise
Ck=

C0≠dd00 C1 C2 C3 C4 …
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dd22

22

dd33

33

11

441100LL

…………

33

22

dd0000

5, if dk=6

6, otherwise
Ck=

C0 C1≠dd11 C2 C3 C4 …

22
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…………
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5, if dk=6

6, otherwise
Ck=

C0 C1 C2≠dd22 C3 C4 …

22

dd33

33

dd1111

441100LL

…………

33

22

dd0000

5, if dk=6

6, otherwise
Ck=

By design, ConfuseL can’t be on the list! 
ConfuseL differs from the kth element on the 

list in the kth position. Contradiction of 
assumption that list is complete.

C0 C1 C2≠dd22 C3 C4 …

The set of reals is
uncountable!
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Hold it!
Why can’t the same
argument be used to

show that Q is
uncountable?

The argument works the
same for Q until the

punchline. CONFUSEL
is not necessarily

rational, so there is no
contradiction from the
fact that it is missing.

Standard NotationStandard Notation

ΣΣ = Any finite alphabet= Any finite alphabet
Example: {a,b,c,d,e,…,z}

Σ∗ = All finite strings of symbols          
from Σ including the empty      
string ε

Theorem: Every infinite subset STheorem: Every infinite subset S
ofof ΣΣΣΣΣΣΣΣ** is countableis countable

Proof: Sort S by first by length and Proof: Sort S by first by length and 
then alphabetically. Map the first word then alphabetically. Map the first word 
to 0, the second to 1, and so on….to 0, the second to 1, and so on….
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Stringing Symbols TogetherStringing Symbols Together

ΣΣ = The symbols on a standard        = The symbols on a standard        
keyboardkeyboard

The set of all possible Java 
programs is a subset of Σ∗

The set of all possible finite 
pieces of English text is a 
subset of Σ∗

Thus:

The set of all possible 
Java programs is 

countable.

The set of all possible 
finite length pieces of 

English text is countable.

There are countably many 
Java program and 

uncountably many reals.

HENCE:

MOST REALS ARE NOT 
COMPUTABLE.

There are countably many 
descriptions and 

uncountably many reals.

Hence:
MOST REAL NUMBERS 

ARE NOT 
DESCRIBEABLE!
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Oh, 
Bonzo!

Is there a real 
number that can 

be described, but 
not computed?

We know there are 
at least 2 infinities. 

Are there more?

Power SetPower Set

The power set of S is the set of all The power set of S is the set of all 
subsets of S. The power set is denoted subsets of S. The power set is denoted 
PP(S).(S).

Proposition: If S is finite, the power Proposition: If S is finite, the power 
set of S has cardinality 2set of S has cardinality 2|S||S|
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Theorem: S can’t be put into 1Theorem: S can’t be put into 1--11
correspondence withcorrespondence with PP(S)(S)

Suppose Suppose ff:S:S-->>PP(S) is 1(S) is 1--1 and ONTO.1 and ONTO.

A

B

C

S

{B}

∅

{A}

{C}

PP(S)(S)

{A,B}
{B,C}

{A,C}

{A,B,C}

Theorem: S can’t be put into 1Theorem: S can’t be put into 1--11
correspondence withcorrespondence with PP(S)(S)
Suppose Suppose ff:S:S-->>PP(S) is 1(S) is 1--1 and ONTO.1 and ONTO.

Let CONFUSE = { x | x Let CONFUSE = { x | x ∈∈ S, x S, x ∉∉ f(x) }f(x) }
There is some y such that f(y)=CONFUSEThere is some y such that f(y)=CONFUSE

A

B

C

S

{B}

∅

{A}

{C}

PP(S)(S)

{A,B}

{B,C} {A,C}

{A,B,C}

Is y in CONFUSE?Is y in CONFUSE?

YES: Definition of CONFUSE implies noYES: Definition of CONFUSE implies no

NO: Definition of CONFUSE implies yesNO: Definition of CONFUSE implies yes

Theorem: S can’t be put into 1Theorem: S can’t be put into 1--11
correspondence withcorrespondence with PP(S)(S)
Suppose Suppose ff:S:S-->>PP(S) is 1(S) is 1--1 and ONTO.1 and ONTO.

Let CONFUSE = { x | x Let CONFUSE = { x | x ∈∈ S, x S, x ∉∉ f(x) }f(x) }
There is some y such that f(y)=CONFUSEThere is some y such that f(y)=CONFUSE

A

B

C

S

{B}

∅

{A}

{C}

PP(S)(S)

{A,B}

{B,C} {A,C}

{A,B,C}

Is y in CONFUSE?Is y in CONFUSE?

YES: Definition of CONFUSE implies noYES: Definition of CONFUSE implies no

NO: Definition of CONFUSE implies yesNO: Definition of CONFUSE implies yes

Contradiction

This proves that there are 
at least a countable 
number of infinities.

The first infinity is called:

ℵ 0
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ℵ 0, ℵ 1,ℵ 2,…
Cantor wanted to show 

that the number of 

reals was ℵ 1

Cantor called his 
conjecture that ℵ 1 was 
the number of reals the 
“Continuum Hypothesis.”
However, he was unable 
to prove it.  This helped 

fuel his depression.

The Continuum 
Hypothesis can’t be 
proved or disproved! 
This has been proved!


